Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Pers Med ; 12(2)2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1709383

ABSTRACT

Currently, most mask extraction techniques are based on convolutional neural networks (CNNs). However, there are still numerous problems that mask extraction techniques need to solve. Thus, the most advanced methods to deploy artificial intelligence (AI) techniques are necessary. The use of cooperative agents in mask extraction increases the efficiency of automatic image segmentation. Hence, we introduce a new mask extraction method that is based on multi-agent deep reinforcement learning (DRL) to minimize the long-term manual mask extraction and to enhance medical image segmentation frameworks. A DRL-based method is introduced to deal with mask extraction issues. This new method utilizes a modified version of the Deep Q-Network to enable the mask detector to select masks from the image studied. Based on COVID-19 computed tomography (CT) images, we used DRL mask extraction-based techniques to extract visual features of COVID-19 infected areas and provide an accurate clinical diagnosis while optimizing the pathogenic diagnostic test and saving time. We collected CT images of different cases (normal chest CT, pneumonia, typical viral cases, and cases of COVID-19). Experimental validation achieved a precision of 97.12% with a Dice of 80.81%, a sensitivity of 79.97%, a specificity of 99.48%, a precision of 85.21%, an F1 score of 83.01%, a structural metric of 84.38%, and a mean absolute error of 0.86%. Additionally, the results of the visual segmentation clearly reflected the ground truth. The results reveal the proof of principle for using DRL to extract CT masks for an effective diagnosis of COVID-19.

3.
Clin Imaging ; 76: 6-14, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1051562

ABSTRACT

OBJECTIVE: SARS-CoV-2 is a worldwide health emergency with unrecognized clinical features. This paper aims to review the most recent medical imaging techniques used for the diagnosis of SARS-CoV-2 and their potential contributions to attenuate the pandemic. Recent researches, including artificial intelligence tools, will be described. METHODS: We review the main clinical features of SARS-CoV-2 revealed by different medical imaging techniques. First, we present the clinical findings of each technique. Then, we describe several artificial intelligence approaches introduced for the SARS-CoV-2 diagnosis. RESULTS: CT is the most accurate diagnostic modality of SARS-CoV-2. Additionally, ground-glass opacities and consolidation are the most common signs of SARS-CoV-2 in CT images. However, other findings such as reticular pattern, and crazy paving could be observed. We also found that pleural effusion and pneumothorax features are less common in SARS-CoV-2. According to the literature, the B lines artifacts and pleural line irregularities are the common signs of SARS-CoV-2 in ultrasound images. We have also stated the different studies, focusing on artificial intelligence tools, to evaluate the SARS-CoV-2 severity. We found that most of the reported works based on deep learning focused on the detection of SARS-CoV-2 from medical images while the challenge for the radiologists is how to differentiate between SARS-CoV-2 and other viral infections with the same clinical features. CONCLUSION: The identification of SARS-CoV-2 manifestations on medical images is a key step in radiological workflow for the diagnosis of the virus and could be useful for researchers working on computer-aided diagnosis of pulmonary infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Artificial Intelligence , COVID-19 Testing , Humans , Lung , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL